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Issues 

The implementation of a linear regression model on pre- and post-molt crab sizes is the subject of 

this research. To put it simply, the pre- and post-molt sizes of crabs are predicted using the post-

molt sizes. We also go over data interpretation to assess whether or not crab post-molt sizes may 

accurately predict crab pre-molt sizes. There was some mistake in the pre-molt size forecasts that 

we had to quantify and assess to see whether it would make the predictions risky to utilize owing to 

inaccuracy while developing the ability to estimate pre-molt sizes from post molt sizes. We also 

examine if, given the limited data available, we can only forecast pre-molt sizes more precisely in 

those places where we have more data. We are then left with our conclusions regarding the 

effectiveness and dependability of employing post-molt sizing to generate or anticipate crab pre-

molt sizes after completing these steps. 

 

Findings 

Considering the extremely high r-squared values, the data we have seems to function reasonably 

well in forecasting pre molt sizes from post molt sizes. Given that the inaccuracy is typically higher in 

the lower ranges of post molt sizes, care should be used if using this model to forecast pre molt 

sizes. 

 

The accuracy of the forecast in the lower ranges might be improved by adding more data on crabs 

molting sizes that include post-molt sizes that are lower in the range. This would improve the model 

as a whole. 

 

Discussion 

We came to the conclusion that the model had more inaccuracy when forecasting in the lower 

ranges of post-molt sizes after completing general statistics on the crab molting data. This is related 

to our problem with the inadequate data and, thus, the poor accuracy across the post-molt sizing 

ranges. We can also confirm that the model is not dangerous due to these inaccuracies, but instead, 

we give caution about the higher error when using post molt sizes in the lower ranges. Giving post 

molt sizes in this range results in less mistake and more accurate forecasts since the lower ranges of 

post molt sizing are less accurate than the upper ranges, roughly between 125 and 160. As the 

majority of post-molt sizes fall within this range, the prediction has a better idea of what the 

expected output pre-molt sizes should be, which accounts for the higher accuracy. It is 

demonstrated that post molt size data can predict pre molt sizes of crabs well within the limitations 

of tolerance or error due to the higher accuracy in the post molt range. 

 



Appendix A: Methods 

In order to forecast pre-molt sizes of crabs, this study uses a dataset of crab molt sizes and the 

variables pre-molt size and post-molt size. The following steps involved evaluating the data by 

collecting post- and pre-molt summaries for each variable, which gave us the minimum, first 

quartile, median, mean, third quartile, and maximum. The next step was to determine whether the 

data for each variable followed a normal distribution. There are several ways to do this, such as by 

looking at each variable's kurtosis and skewness to see if they are 3 and 0, respectively, or very close 

to them. Then by examining the density plots and histograms for each variable. The three tests were 

followed by the completion of the normalcy check. To illustrate the difference/shift in the data after 

plotting the density plots, we may superimpose them on top of one another and draw two vertical 

lines representing the means of the post- and pre-molt sizes. We can then develop the linear model 

in R using a linear regression function, forecasting pre-molt sizes based on post-molt values. We may 

also obtain the model's Pearson's r-squared value, which helps to show how effectively post-molt 

sizing contributes to forecasting pre-molt size, in order to assess the model's fit by examining the 

plot of the line produced by the R function over the data. Following the prediction model's 

computation, we compute the difference between the data's initial pre-molt values and the values 

our model predicted from the post-molt sizes to examine residuals/errors of the prediction. Next, by 

using a quantile or q-q plot in R, which generates a scatter plot of all the residuals and draws a line 

across it, we examine if the residuals or errors follow a normal distribution. The residuals would not 

be typical if some of the spots were not on the line. To thoroughly verify this, we calculate the 

residuals' kurtosis and skewness. If these values are 3 and 0, respectively, then the residuals are 

normal; otherwise, they could be extremely close to or very far from normal. We plot the density 

plot over the histogram and the histogram of the crab residuals in order to understand the kurtosis 

of the data. We next check to see if the histogram has a long tail or if the residuals reach a steep 

peak rapidly. Several factors may have an impact on the residuals' value of kurtosis. The residuals 

are then plotted on the y-axis while the post molt sizes are used as the predictor variable on the x-

axis to determine whether the residuals exhibit heteroscedastic behavior. Heteroscedasticity in the 

residuals is present if there are visual clusters, conical forms, which indicate that there are more 

points as you move further right on the x-axis, or a discernible pattern to the residuals plotted. 

These statistics will enable a conclusion to be drawn regarding the model's accuracy and potential 

applications. 

 

Appendix B: Results 

 First, we will start off with the summary of both variables in the data set, 

 

 

 

 



 

 

 

As the Kurtosis and Skewness are not 3 and 0, respectively, we can immediately conclude that 

neither variable has a normal distribution. Below are two histograms and two density plots; the left 

histogram represents the post-molt variable, and the right histogram represents the pre-molt 

variable. These density and histogram plots demonstrate that the data do not follow a normal 

distribution along with the Kurtosis and Skewness. (For comparison, see the example normal 

distribution histogram and density below.) 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

You can observe that the variables do not follow a normal distribution by examining the example 

normal distribution. 

 

 

 

 

 



 

 

 

 

 

 

The density plot for pre- and post-molt sizes is overlaid in the following graphic, which also shows a 

line for each variable's mean to illustrate how the data differ. On the molt change, the mean 

differences total 143.3 - 128.5 = 14.8. (Each color dotted line represents the mean of the 

corresponding variable; for example, the mean for pre-molt is represented by the red dotted line.) 

 

 

 

 

 

 

 

 

 

 

Below is a plot with the post molt data as the x-axis and pre-molt along the y-axis, then placed is the 

line generated from linear regression function. On the right-hand side is a summary of important 

values from the linear regression summary. 

 

 



 

 

As seen below, a Q-Q or quantile plot is constructed using the residuals from the created linear 

model as a test for residual normality. The residuals have a normal distribution if all points lie on the 

line. 

 

 

 

 

 



 

 

 

 

 

A histogram with a density plot overlay and a list of the residuals on the right side are provided to 

demonstrate this non-normality. The kurtosis of the residuals, which are otherwise close to normal 

but not normal, may be impacted by the plot with the long tail in this case. 

 

 

 

 

 



 

 

 

 

 

 

 

The residuals are then plotted against the predictor variable, post molt size, with post molt acting as 

the x-axis and residuals as the y-axis. This graphic is used to check the prediction model for 

heteroscedasticity. This demonstrates that the model performs better at the higher end of the post 

molt range. 

 

 



 

 

Appendix C: Data & Code 

library(readxl) 

crab_molt_data <- read_excel("C:/Users/Mahesh Varma/Desktop/MTH 522/crab_molt_data.xls") 

View(crab_molt_data) 

attach(crab_molt_data) 

 

library(moments) # To import the skewness and kurtosis function.  

#Now we have two variables in the Data Set  i.e. PostMolt and PreMolt and we have to describe 

these two variables 

#Let’s start with PostMolt 

min (PostMolt)  

max (PostMolt) 

median(PostMolt)  

mean(PostMolt)  

sd(PostMolt)  

skewness (PostMolt)  

kurtosis (PostMolt) 

 

#PreMolt 

 

min (PreMolt)  

max (PreMolt)  

median(PreMolt) 

mean(PreMolt)  

sd (PreMolt)  

skewness (PreMolt)  

kurtosis(PreMolt) 

 



#Now we have to make a Probability Density Function(PDF) histogram for each variable #In the 

histogram plot , the Y axis will be represented by the frequency and we want the density function, So 

we will replace F with density function by typing “freq=F” #Lets begin with PostMolt 

 

hist(PostMolt, freq=F, las=1,ylim=c(0,0.040),col=“red”) 

 

#Now the histogram plot of PreMolt 

 

hist (PreMolt, freq=F,las=1,ylim=c(0,0.040),col =‘blue’) 

 

#Let’s find the density of the PreMolt and PostMolt variables 

 

lines(density (PostMolt),col=“red”,lwd=3) lines(density(PreMolt),col=“blue”,lwd=3) 

 

#Now we will overlap the two histograms in such a way that the difference in the distribution would 

be visible by naked eye 

 

hist (PostMolt, freq=F,ylim=c(0,0.040),main=“Overlapping between PostMolt and PreMolt”, 

xlabel=“Sizes”, Col=rgb(1,0,0,0.5),las=1) hist(PreMolt, freq=F,add=TRUE, col=rgb(0,0,1,0.5)) 

 

#Now we do the density plot for the overlapping of two variables 

 

plot(density (PostMolt),col=“red”,lwd=3,main=“Density Plots of PostMolt&PreMolt”) 

lines(density(PreMolt),col=“blue”,lwd=3) 

 

#In this step we will plot the dependent variable(PreMolt) as a function of independent 

variable(PostMolt) with the help of Scatter Plot 

 

plot (PostMolt, PreMolt, main= “ScatterPlot”) 

 

#Now we must plot the least square linear regression on the same plot as the data 

 

model <- lm (PreMolt ~ PostMolt) summary(model) abline (model,col=“darkorange”, lwd =3) 



 

#Now we calculate find the Pearsons r^2 regression 

 

results <- cor.test (PreMolt, PostMolt, method= “pearson”) results 

 

#Let’s do the descriptive statistics for the residuals  

 

residuals <- model$residuals  

sapply (residuals, sum) 

 

#Plotting the residuals in the histogram plot 

 

hist (residuals, freq=F,las=1,col=“green” ,ylim=c(0,0.20)) 

 

#Plotting the density line for the residuals 

 

plot(density(residuals), col= “green” ,lwd=3,ylim =c(0,0.20),main=“Density Plot of Residuals”) 

lines(density(residuals),col=“green”, lwd=3) 

 

#Quantile Plot of residuals to check the normality 

 

qqnorm (residuals, pch=1,frame=FALSE, main=“Quantile Plot of residuals”)  

qqline (residuals, col= “steelblue”, lwd=2) 

 

#Performing Shapiro-Walks Test 

 

shapiro.test((residuals)) 

 

#Plot the residuals against the dependent variable (PreMolt) 

 

plot (residuals, PreMolt, main = “ScatterPlot”) 



r_model <- lm (PreMolt~residuals) summary(r_model) abline(r_model, col=“brown”,lwd=3) 

plot(r_model) 
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