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Cross-Validation
1)

Code and description:

First we need to install the libraries and packages

install.packages(“caret™)

Now we need to load the data and we need to examine the structure

library(readxl)
data <- read_excel("babies_weight.xIs")



str(data)

tibble [1,236 x 6] (S3: tbl_df/tbl/data.frame)

S3
$ Gestation : num [1:1236] 284 282 279 999 282 286 244 245 289 299 ...
$ Age :num [1:1236] 27 33 28 36 23 25 33 23 25 30 ...
$ Height :onum [1:1236] 62 64 64 69 67 62 62 65 62 66 ..
$ Weight tonum [1:1236] 100 135 115 19@ 125 93 178 146 125 136 ...
¢ smoke tnum [1:1236] e ®81 @160 001 ...

[1

¢ Birthweight: num 11236] 126 113 128 123 108 136 138 132 120 143 ...

The str function shows us that the dataset has 1236 observations of 6 variables

e Multivariate Linear Regression

Next, the Im function is used to build a multivariate linear regression model that predicts birth
weight from gestation, age, height, weight, and smoking status.

The summary function provides an overview of the model's coefficients and statistical
significance.

model <- Im(Birthweight ~ Gestation + Age + Height + Weight + Smoke, data=data)
summary(model)

call:
Im(formula = Birthweight ~ Gestation + Age + Height + Weight +
Smoke, data = data)

Residuals:
Min 1Q Median 3Q Max
-65.231 -11.317 0.325 11.284 55.745

Coefficients:
Estimate Std. Error t wvalue Pr(>|t]|)

(Intercept) 81.81@363 7.947180 10.294 < 2e-16 *F*
Gestation 9.012800 0.006830 1.874 ©.061131 .
Age @.07e37e 8.079456 ©.886 ©.375981
Height 8.525584 8.121922 4,211 1.76e-85 *%%*
Weight -8.005831 @.084336 -1.345 ©.178946
Smoke -1.989831 0.561626 -3.542 0.000413 ***

Signif. codes: @ %%’ g.e@el “**’ @.e1 *’ @.05 ‘.7 @.1 ° 7 1

Residual standard error: 17.99 on 123@ degrees of freedom
Multiple R-squared: @.83056, Adjusted R-squared: @.02661
F-statistic: 7.754 on 5 and 1238 DF, p-value: 3.415e-87

Outcome: The output shows that all predictor variables except smoking status are
significantly associated with birth weight.

The adjusted R-squared value of 0.02661 suggests that the model explains only about a
quarter of the variance in birth weight.



Now we’ll be randomly splitting the data into 2 halves for validation using validation set
method

set.seed(123)

train_idx <- sample(nrow(data), nrow(data)/2)
train <- data[train_idx, ]

test <- data[-train_idx, ]

The sample function was used to randomly select half of the row indices, and then used
the ‘[ operator to extract the corresponding rows as the training set.

Building a linear model using the training set, and evaluating its performance on the test set:

train_model <- Im(Birthweight ~ Gestation + Age + Height + Weight + Smoke, data=train)
summary(train_model)

call:
Im(formula = Birthweight ~ Gestation + Age + Height + Weight +
Smoke, data = train)

Residuals:
Min 10 Median 30 Max
-65.836 -11.156 8.855 11.278 54.118

Coefficients:
Estimate std. Error t value Pr(>|t]|)

(Intercept) 73.277907 12.188458 6.012 3.15e-99 **%*
Gestation 9.885439 ©.889579 ©.568 ©.570391

Age ©.874024 ©.124152 ©.596 ©.551237
Height 9.692564 9.189422 3.656 ©.008278 ***
Weight -0.008280 ©.887132 -1.161 @.246086
Smoke -1.301027 ©.762052 -1.707 ©.088280 .

Signif. codes: @ “***’ g.@e01 “**’ @.91 “*’ @.05 ‘.7 0.1 1

Residual standard error: 18.44 on 612 degrees of freedom
Multiple R-squared: ©.@335, Adjusted R-squared: ©.82561
F-statistic: 4.243 on 5 and 612 DF, p-value: ©.0008436

The predict function is used to obtain predicted values for the test set using the model built on
the training set.

We then calculate the mean squared error and mean absolute error of the predictions relative
to the actual birth weights.



Plotting of the test set errors:

hist(test_error)

Histogram of test error

150
]

100
1

Frequency

.

T T T T T T 1
-60 -40 -20 o 20 40 60

test_error

The histogram shows that the errors are approximately normally distributed, with a mean near
zero.

2) Next, the leave-one-out cross-validation (LOOCV) was used to test the linear model:

Code and description:

library(boot)
cv_model <- cv.glm(data, train_model, K=nrow(data))
cv_model$delta

e The cv.glm function from the boot package is used to perform LOOCYV on the full
dataset, using the linear model built on the training set.

e The $delta component of the output contains the LOOCYV error estimate and its
standard error, along with other information.

3) Finally, we will use k-fold cross-validation with k=10 to test the linear model:



Code and description:

e The createFolds function from the caret package is used to create a list of 10 folds for
k-fold cross-validation.

o For each fold, linear model is built on the training set and its performance evaluated
on the test set, calculating the mean squared error and mean absolute error.

e The results are yhen averaged across all folds to obtain the final cross-validation error
estimates.

library(caret)
set.seed(123)
folds <- createFolds(data$Birthweight, k=10)
cv_results <- lapply(folds, function(fold){
train_fold <- data[-fold, ]
test_fold <- data[fold, ]
model <- Im(Birthweight ~ Gestation + Age + Height + Weight + Smoke, data=train_fold)
pred <- predict(model, newdata=test_fold)
error <- test_fold$Birthweight - pred
list(mse = mean(error"2), mae = mean(abs(error)))
by,
cv_mse <- mean(unlist(lapply(cv_results, function(x) x$mse)))
cv_mae <- mean(unlist(lapply(cv_results, function(x) x$mae)))

Loading required package: ggplot2

Loading required package: lattice
Attaching package: flattice’

The following object is masked from ‘package:boot’:
melanoma

Warning message in system(“timedatectl”, intern = TRUE):
“running command 'timedatectl' had status 1"

Outcome: Based on the results, it can be seen that the LOOCV and 10-fold CV estimates
are very similar to each other, and slightly lower than the validation set estimate. This
suggests that the linear model may generalize well to new data.



However, it is important to note that these error estimates are only valid for the specific
model and data set used, and may not generalize to other models or data sets.

Therefore, it is always a good idea to test multiple models and evaluate their performance on
multiple data sets before drawing conclusions about their predictive accuracy.

Bootstrap

o Load the data from the Crab-molt.xIs file and extract the postmolt and premolt
columns.

« Define a function that takes a bootstrap sample of the data and fits a linear model to it,
returning the estimated coefficients.

o Use the boot function from the boot package to generate a large number of bootstrap
samples and apply the function from step 2 to each sample.

o Calculate the standard errors of the estimated coefficients from the bootstrap samples.

Code Implementation:

library(readxl)
library(boot)

# Load data from Excel file

crab_data <- read_excel(*"crab_molt.xIs")
postmolt <- crab_data$PostMolt

premolt <- crab_data$PreMolt

# Define function to fit linear model and extract coefficients
fit_Im <- function(data, indices) {
fit <- Im(premolt[indices] ~ postmolt[indices], data=data)
return(coef(fit))
}

# Set seed for reproducibility
set.seed(123)

# Use bootstrapping to estimate standard errors
boot_results <- boot(data.frame(postmolt, premolt), fit_Im, R=10000)

# Calculate standard errors of coefficients
se_beta0 <- sd(boot_results$t[,1])
se_betal <- sd(boot_results$t[,2])

# Print results
cat(""Standard error of beta0:", se_beta0, "\n")
cat("Standard error of betal:", se_betal, "\n")



Outcome:

The values from the results tell us that we would expect to see a standard deviation of about
0.013 in our estimates of beta0 if we were to repeatedly sample from the population of crabs,
and a standard deviation of about 1.113 in our estimates of betal.

This suggests that our estimates of the coefficients are fairly stable and that our linear model
is a good fit for the data.






