Advanced Mathematical Statistics

MTH-522

Project-4

Submitted by

Mahesh Vinay Varma Chiluvuri

02084470

1) Code:-

data(USArrests)

states <- row.names(USArrests)</pre>

states

names(USArrests)

apply(USArrests, 2, mean)

apply(USArrests, 2, var)

pr.out <- prcomp(USArrests, scale = TRUE)</pre>

names(pr.out)

pr.out\$center

pr.out\$scale

pr.out\$rotation

dim(pr.out\$x)

biplot(pr.out, scale = 0)

pr.out\$rotation = -pr.out\$rotation

pr.out\$x = -pr.out\$x

biplot(pr.out, scale = 0)

pr.out\$sdev

```
pr.var <- pr.out$sdev^2
pr.var
pve <- pr.var / sum(pr.var)
pve
par(mfrow = c(1, 2))
plot(pve, xlab = "Principal Component",
   ylab = "Proportion of Variance Explained", ylim = c(0, 1),
   type = "b")
plot(cumsum(pve), xlab = "Principal Component",
   ylab = "Cumulative Proportion of Variance Explained",
   ylim = c(0, 1), type = "b")
a <- c(1, 2, 8, -3)
cumsum(a)
X <- data.matrix(scale(USArrests))
pcob <- prcomp(X)</pre>
summary(pcob)
sX \le svd(X)
names(sX)
round(sX$v, 3)
pcob$rotation
t(sX$d * t(sX$u))
pcob$x
nomit <- 20
set.seed(15)
ina <- sample(seq(50), nomit)
inb <- sample(1:4, nomit, replace = TRUE)
Xna <- X
index.na <- cbind(ina, inb)
Xna[index.na] <- NA
fit.svd <- function(X, M = 1) {
```

```
svdob <- svd(X)
with(svdob,
    u[, 1:M, drop = FALSE] %*%
    (d[1:M] * t(v[, 1:M, drop = FALSE]))
)
</pre>
```

```
Xhat <- Xna
xbar <- colMeans(Xna, na.rm = TRUE)
Xhat[index.na] <- xbar[inb]
thresh <- 1e-7
rel_err <- 1
iter <- 0
ismiss <- is.na(Xna)
mssold <- mean((scale(Xna, xbar, FALSE)[!ismiss])^2)</pre>
mss0 <- mean(Xna[!ismiss]^2)
while(rel_err > thresh) {
 iter <- iter + 1
 # Step 2(a)
 Xapp <- fit.svd(Xhat, M = 1)
 # Step 2(b)
 Xhat[ismiss] <- Xapp[ismiss]
 # Step 2(c)
 mss <- mean(((Xna - Xapp)[!ismiss])^2)
 rel_err <- (mssold - mss) / mss0
 mssold  - mss
 cat("Iter:", iter, "MSS:", mss,
    "Rel. Err:", rel_err, "\n")
}
```

cor(Xapp[ismiss], X[ismiss])

Output:-

Console Terminal × Backg	round Jobs ×				-0		
R 4.2.2 · ~/							
<pre>> data(USArrests)</pre>							
> states <- row.names	(USArrests)						
> states					_		
[1] "Alabama"	"Alaska"	"Arizona"	"Arkansas"	"California"	_		
[6] "Colorado"	"Connecticut"	"Delaware"	"Florida"	"Georgia"	_		
[11] "Hawall"	"Idano" "Kentusku"	"Lillinois"	"Indiana"	"Iowa" "Mamuland"	_		
[10] KallSaS [21] "Massachusotts"	"Michigan"	"Minnosota"	"Mississippi"	"Miccouni"	_		
[26] "Montana"	"Nehraska"	"Nevada"	"New Hamnshire"	"New Jersey"			
[31] "New Mexico"	"New York"	"North Carolina"	"North Dakota"	"Ohio"			
[36] "Oklahoma"	"Oregon"	"Pennsylvania"	"Rhode Island"	"South Carolina"			
[41] "South Dakota"	"Tennessee"	"Texas"	"Utah"	"Vermont"			
[46] "Virginia"	"Washington"	"West Virginia"	"Wisconsin"	"Wyoming"			
<pre>> names(USArrests)</pre>	-	-					
[1] "Murder" "Assau	lt" "UrbanPop" "I	Rape"					
<pre>> apply(USArrests, 2,</pre>	mean)						
Murder Assault Urb	anPop Rape						
/./88 1/0./60 6	5.540 21.232						
> apply(USArrests, 2,	var)	Dana					
MULTUEL ASSAULT	0100 51979 97	каре 72016					
$> pr_{out} < - pr_{comp}(US)$	209.31070 07.7						
> names(nr out)	Arrests, scare -	TROL					
[1] "sdev" "rotat	ion" "center" "	scale" "x"					
> pr.out\$center							
Murder Assault Urb	anPop Rape						
7.788 170.760 65.540 21.232							
<pre>> pr.out\$scale</pre>							
Murder Assault UrbanPop Rape							
4.355510 83.337661 1	4.474763 9.36638	5					
> pr.out\$rotation							
PC1	PC2 I	PC3 PC4					
Murder -0.5358995	0.4181809 -0.3412	32/ 0.04922/80					
ASSault = 0.3651650	0.10/9030 -0.20014	404 -0./4340/40					
Rane -0.5434321 -1	0.0720002 = 0.3780	779 0 08902432					
$> \dim(pr, out x)$	0.10/0100 0.01///	0.00002402					
[1] 50 4							
> biplot(pr.out, scal	e = 0)						
> pr.out\$rotation = -	pr.out\$rotation						
> pr.out = -pr.out	x				•		

Console Terminal × Background Jobs ×	-0
R 4.2.2 · ~/ 🗇	
> pr.out\$sdev [1] 1.5748783 0.9948694 0.5971291 0.4164494	•
> pr.var <- pr.out\$sdev^2	
> pr.var	
[1] 2.4802416 0.989/652 0.3565632 0.1/34301	
> pve <- pr.var / sum(pr.var)	
> pve	
$\sum_{n=1}^{n} (n + 1) = n + (n + 1) = 0.0000000000000000000000000000000000$	
> plot(inve xlab = "Principal Component"	
+ vlab = "Proportion of Variance Explained". $vlim = c(0, 1)$.	
+ type = "b")	
<pre>> plot(cumsum(pve), xlab = "Principal Component",</pre>	
+ ylab = "Cumulative Proportion of Variance Explained",	
+ ylim = c(0, 1), type = "b")	
> a <- c(1, 2, 8, -3)	
> cumsum(a)	
> X <- data.matrix(scale(USArrests))	
> pcob <- prcomp(X)	
> summary(pcob)	
Importance of components:	
$\begin{array}{cccc} PCL & PC2 & PC3 & PC4 \\ Findand & doviation & 1 & F74 & O & O & O & O & O & O \\ Findand & doviation & O & O & O & O & O & O \\ \end{array}$	
$\begin{array}{c} \text{Statual u ueviation} & 1.5749 (0.5949 (0.5914 0.0404) \\ \text{Bronortion of Variance 0.6201 (0.2474 0.08014 0.04336) \\ \end{array}$	
$\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$	
> sX <- svd(X)	
> names (sX)	
[1] "d" "u" "v"	
> round(sX \$v, 3)	
[,1] [,2] [,3] [,4]	
[1,] -0.536 0.418 -0.341 0.649	
[2,] -0.583 0.188 -0.268 -0.743	
[3,] -0.278 -0.873 -0.378 0.134	
[4,] -0.543 -0.167 0.818 0.089	
> pcobsrotation	
PCL PCZ PC3 PC4	
Murider -0.555695 0.44181809 -0.5412327 0.04922780	
Assault $-0.3031030 -0.203100 -0.2001404 -0.79307400$	
Pane -0.5/34321 -0.1673186 0.8177779 0.08002432	-

Console	Terminal ×	Background Jobs	c		- ć
R 4	4.2.2 · ~/ 🖈				4
> t(s)	x\$d * t(sX\$u))			
	[,1]	[,2]	[,3]	[,4]	
[1,]	-0.97566045	1.12200121	-0.43980366	0.154696581	
[2,]	-1.93053788	1.06242692	2.01950027	-0.434175454	
[3,]	-1.74544285	-0.73845954	0.05423025	-0.826264240	
[4,]	0.13999894	1.10854226	0.11342217	-0.180973554	
[5,]	-2.49861285	-1.52742672	0.59254100	-0.338559240	
[6,]	-1.49934074	-0.97762966	1.08400162	0.001450164	
[7,]	1.34499236	-1.07798362	-0.63679250	-0.117278736	
[8,]	-0.04722981	-0.32208890	-0.71141032	-0.873113315	
[9,]	-2.98275967	0.03883425	-0.57103206	-0.095317042	
[10,]	-1.62280742	1.26608838	-0.33901818	1.065974459	
[11,]	0.90348448	-1.55467609	0.05027151	0.893733198	
[12,]	1.62331903	0.20885253	0.25719021	-0.494087852	
[13,]	-1.36505197	-0.67498834	-0.67068647	-0.120794916	
[14,]	0.50038122	-0.15003926	0.22576277	0.420397595	
[15,]	2.23099579	-0.10300828	0.16291036	0.017379470	
[16,]	0.78887206	-0.26744941	0.02529648	0.204421034	
[17,]	0.74331256	0.94880748	-0.02808429	0.663817237	
[18,]	-1.54909076	0.86230011	-0.77560598	0.450157791	
[19,]	2.37274014	0.37260865	-0.06502225	-0.327138529	
[20,]	-1.74564663	0.42335704	-0.15566968	-0.553450589	
[21,]	0.48128007	-1.45967706	-0.60337172	-0.177793902	
[22,]	-2.08725025	-0.15383500	0.38100046	0.101343128	
[23,]	1.6/566951	-0.625906/0	0.15153200	0.066640316	
[24,]	-0.9864/919	2.369/3/12	-0./3336290	0.213342049	
[25,]	-0.689/8426	-0.260/0/94	0.3/365033	0.223554811	
[26,]	1.1/353/51	0.5314/851	0.24440/96	0.122498555	
[2/,]	1.25291625	-0.19200440	0.1/380930	0.015/33156	
[28,]	-2.84550542	-0./6/80502	1.15168/93	0.311354436	
[29,]	2.33993383	-0.01/90055	0.03648498	-0.032804291	
[30,]	-0.1/9/4128	0 14141200	-0./30//041	0.240950580	
[21,]	-1.90012551	0.14141506	0.10104390	-0.001221110	
[22,]	-1.00000002	-0.014910/2	-0.05001160	-0.015546644	
[20,]	-1.11200808	0.50200729	0.20824020	-0.251/2/626	
[35]	0 22360426	-0 73/77827	-0.03082616	0.201404020	
[36]	0.22309430	-0.28/06112	-0.01515502	0.40913201/	
[30,]	-0.05852787	-0 53506000	0.01010092	-0 235300872	
[38]	0 87948680	-0 56536050	-0.39660218	0 355452378	
[30,]	0.85500072	-1 /7608328	-1 35617705	-0 607402746	
1991	0.05505072	1.4/050520	T. 3301//03	0.00/402/40	

[34.] 2.962152	223 0.59309738 0.29824930 -0.251434626	
[35,] 0,22369	436 -0.73477837 -0.03082616 0.469152817	
[36.] 0.30864	928 -0.28496113 -0.01515592 0.010228476	
[37.] -0.05852	787 -0.53596999 0.93038718 -0.235390872	
[38.] 0.87948	680 -0.56536050 -0.39660218 0.355452378	
[39.] 0.85509	072 -1.47698328 -1.35617705 -0.607402746	
[40.] -1.30744	986 1.91397297 -0.29751723 -0.130145378	
[41.] 1.96779	669 0.81506822 0.38538073 -0.108470512	
[42,] -0.98969	377 0.85160534 0.18619262 0.646302674	
[43,] -1.341518	838 -0.40833518 -0.48712332 0.636731051	
[44,] 0.54503	180 -1.45671524 0.29077592 -0.081486749	
[45,] 2.77325	613 1.38819435 0.83280797 -0.143433697	
[46,] 0.09536	670 0.19772785 0.01159482 0.209246429	
[47,] 0.21472	339 -0.96037394 0.61859067 -0.218628161	
[48.] 2.08739	306 1.41052627 0.10372163 0.130583080	
[49,] 2.05881	199 -0.60512507 -0.13746933 0.182253407	
[50,] 0.62310	061 0.31778662 -0.23824049 -0.164976866	
> pcob\$x		
	PC1 PC2 PC3 PC4	
Alabama	-0.97566045 1.12200121 -0.43980366 0.154696581	
Alaska	-1.93053788 1.06242692 2.01950027 -0.434175454	
Arizona	-1.74544285 -0.73845954 0.05423025 -0.826264240	
Arkansas	0.13999894 1.10854226 0.11342217 -0.180973554	
California	-2.49861285 -1.52742672 0.59254100 -0.338559240	
Colorado	-1.49934074 -0.97762966 1.08400162 0.001450164	
Connecticut	1.34499236 -1.07798362 -0.63679250 -0.117278736	
Delaware	-0.04722981 -0.32208890 -0.71141032 -0.873113315	
Florida	-2.98275967 0.03883425 -0.57103206 -0.095317042	
Georgia	-1.62280742 1.26608838 -0.33901818 1.065974459	
Hawaii	0.90348448 -1.55467609 0.05027151 0.893733198	
Idaho	1.62331903 0.20885253 0.25719021 -0.494087852	
Illinois	-1.36505197 -0.67498834 -0.67068647 -0.120794916	
Indiana	0.50038122 -0.15003926 0.22576277 0.420397595	
Iowa	2.23099579 -0.10300828 0.16291036 0.017379470	
Kansas	0.78887206 -0.26744941 0.02529648 0.204421034	
Kentucky	0.74331256 0.94880748 -0.02808429 0.663817237	
Louisiana	-1.54909076 0.86230011 -0.77560598 0.450157791	
Maine	2.37274014 0.37260865 -0.06502225 -0.327138529	
Maryland	-1.74564663 0.42335704 -0.15566968 -0.553450589	
Massachusetts	0.48128007 -1.45967706 -0.60337172 -0.177793902	
Michigan	-2 08725025 -0 15383500 0 38100046 0 101343128	

Michigan	-2.08725025 -	-0.15383500	0.38100046	0.101343128	
Minnesota	1.67566951 -	-0.62590670	0.15153200	0.066640316	
Mississippi	-0.98647919	2.36973712	-0.73336290	0.213342049	
Missouri	-0.68978426 -	-0.26070794	0.37365033	0.223554811	
Montana	1.17353751	0.53147851	0.24440796	0.122498555	
Nebraska	1.25291625 -	-0.19200440	0.17380930	0.015733156	
Nevada	-2.84550542 -	-0.76780502	1.15168793	0.311354436	
New Hampshire	2.35995585 -	-0.01790055	0.03648498	-0.032804291	
New Jersey	-0.17974128 -	-1.43493745	-0.75677041	0.240936580	
New Mexico	-1.96012351	0.14141308	0.18184598	-0.336121113	
New York	-1.66566662 -	-0.81491072	-0.63661186	-0.013348844	
North Carolina	-1.11208808	2.20561081	-0.85489245	-0.944789648	
North Dakota	2.96215223	0.59309738	0.29824930	-0.251434626	
Ohio	0.22369436 -	-0.73477837	-0.03082616	0.469152817	
Oklahoma	0.30864928 -	-0.28496113	-0.01515592	0.010228476	
Oregon	-0.05852787 -	-0.53596999	0.93038718	-0.235390872	
Pennsylvania	0.87948680 -	-0.56536050	-0.39660218	0.355452378	
Rhode Island	0.85509072 -	-1.47698328	-1.35617705	-0.607402746	
South Carolina	-1.30744986	1.91397297	-0.29751723	-0.130145378	
South Dakota	1.96779669	0.81506822	0.38538073	-0.108470512	
Tennessee	-0.98969377	0.85160534	0.18619262	0.646302674	
Texas	-1.34151838 -	-0.40833518	-0.48712332	0.636731051	
Utah	0.54503180 -	-1.45671524	0.29077592	-0.081486749	
Vermont	2.77325613	1.38819435	0.83280797	-0.143433697	
Virginia	0.09536670	0.19772785	0.01159482	0.209246429	
Washington	0.21472339 -	-0.96037394	0.61859067	-0.218628161	
West Virginia	2.08739306	1.41052627	0.10372163	0.130583080	
Wisconsin	2.05881199 -	-0.60512507	-0.13746933	0.182253407	
Wyoming	0.62310061	0.31778662	-0.23824049	-0.164976866	
> nomit <- 20					
<pre>> set.seed(15)</pre>					
> ina <- sampl	e(seq(50), nom	nit)			
> inb <- sampl	e(1:4, nomit,	replace = 1	TRUE)		
> Xna <- X					
> index.na <-	cbind(ina, inb)			
> Xna[index.na] <- NA				
> fit.svd <- f	unction(X, M =	= 1) {			
+ svdob <- s	vd(X)				
+ with(svdob					
	-				
+ u[, 1	:M, drop = FAL	.SE] %*%			

Console lerminal × Background Jobs ×

```
+
            u[, 1:M, drop = FALSE] %*%
+
               (d[1:M] * t(v[, 1:M, drop = FALSE]))
.
+
+ }
    )
>
> Xhat <- Xna
> xbar <- colMeans(Xna, na.rm = TRUE)</pre>
> Xhat[index.na] <- xbar[inb]</pre>
> thresh <- 1e-7
> rel_err <- 1
> iter <- 0
> rter <- 0
> ismiss <- is.na(Xna)
> mssold <- mean((scale(Xna, xbar, FALSE)[!ismiss])^2)
> mss0 <- mean(Xna[!ismiss]^2)</pre>
>
> while(rel_err > thresh) {
     iter <- iter + 1
+
      # Step 2(a)
+
     Xapp <- fit.svd(Xhat, M = 1)</pre>
     # Step 2(b)
+
     Xhat[ismiss] <- Xapp[ismiss]</pre>
+
     # step 2(c)
mss <- mean(((Xna - Xapp)[!ismiss])^2)
rel_err <- (mssold - mss) / mss0</pre>
+
+
+
     +
+
+
+ }
Iter: 1 MSS: 0.3821695 Rel. Err: 0.6194004
Iter: 2 MSS: 0.3705046 Rel. Err: 0.01161265
Iter: 3 MSS: 0.3692779 Rel. Err: 0.001221144
Iter: 4 MSS: 0.3691229 Rel. Err: 0.0001543015
Iter: 5 MSS: 0.3691008 Rel. Err: 2.199233e-05
Iter: 6 MSS: 0.3690974 Rel. Err: 3.376005e-06
Iter: 7 MSS: 0.3690969 Rel. Err: 5.465067e-07
Iter: 8 MSS: 0.3690968 Rel. Err: 9.253082e-08
> cor(Xapp[ismiss], X[ismiss])
[1] 0.6535043
> |
```

Plots:-

Findings:-

- The prcomp() function performs PCA on the given dataset, and the argument scale = TRUE scales the variables to have mean 0 and standard deviation 1 before performing PCA. The summary() function prints a summary of the PCA results, including the proportion of variance explained by each principal component.
- The first row shows the standard deviations of the four principal components. The first principal component (PC1) explains 1.57 units of variance in the data, the second principal component (PC2) explains 0.99 units of variance, and so on. Together, the four principal components explain all of the variance in the data.
- The second row shows the rotation matrix, which gives the loadings (correlations) of each variable on each principal component. For example, the loading of Murder on PC1 is -0.5359, which means that states with high Murder rates tend to have low scores on PC1. The loading of UrbanPop on PC2 is -0.8728, which means that states with high percentages of urban population tend to have low scores on PC2.
- The interpretation of the principal components depends on the loadings of the variables on each component. In this case, we can interpret the first principal component (PC1) as a measure of overall crime rate, as it is positively correlated with all of the variables (Murder, Assault, Rape) in the dataset. The second principal component (PC2) is negatively correlated with UrbanPop, and can be interpreted as a measure of urbanization. The third principal component (PC3) is strongly positively correlated with Rape, and can be interpreted as a measure of sexual assault.

The fourth principal component (PC4) is positively correlated with Murder and negatively correlated • with Assault, and can be interpreted as a measure of the difference between violent and non-violent crimes.

2) Code:set.seed(2)x <- matrix(rnorm(50 * 2), ncol = 2) x[1:25, 1] < x[1:25, 1] + 3x[1:25, 2] <- x[1:25, 2] - 4 km.out <- kmeans(x, 2, nstart = 20) km.out\$cluster plot(x, col = (km.out cluster + 1)),main = "K-Means Clustering Results with K = 2", xlab = "", ylab = "", pch = 20, cex = 2) set.seed(4)km.out <- kmeans(x, 3, nstart = 20) km.out plot(x, col = (km.out cluster + 1)),main = "K-Means Clustering Results with K = 3", xlab = "", ylab = "", pch = 20, cex = 2) set.seed(4)km.out <- kmeans(x, 3, nstart = 1) km.out\$tot.withinss km.out <- kmeans(x, 3, nstart = 20) km.out\$tot.withinss hc.complete <- hclust(dist(x), method = "complete")</pre> hc.average <- hclust(dist(x), method = "average")</pre> hc.single <- hclust(dist(x), method = "single")</pre> par(mfrow = c(1, 3))plot(hc.complete, main = "Complete Linkage",

xlab = "", sub = "", cex = .9)

plot(hc.average, main = "Average Linkage",

xlab = "", sub = "", cex = .9)

plot(hc.single, main = "Single Linkage",

xlab = "", sub = "", cex = .9)

cutree(hc.complete, 2)

cutree(hc.average, 2)

cutree(hc.single, 2)

cutree(hc.single, 4)

xsc <- scale(x)</pre>

plot(hclust(dist(xsc), method = "complete"),

main = "Hierarchical Clustering with Scaled Features")

x <- matrix(rnorm(30 * 3), ncol = 3)

 $dd \leftarrow as.dist(1 - cor(t(x)))$

plot(hclust(dd, method = "complete"),

main = "Complete Linkage with Correlation-Based Distance",

xlab = "", sub = "")

Output:-

```
Console Terminal × Background Jobs ×
                                                                                                                                                                                 -0-
R 4.2.2 · ~/ @
> set.seed(2)
> x <- matrix(rnorm(50 * 2), ncol = 2)
> x[1:25, 1] <- x[1:25, 1] + 3
> x[1:25, 2] <- x[1:25, 2] - 4
> km.out <- kmeans(x, 2, nstart = 20)</pre>
> km.out$cluster
  [46] 2 2 2 2 2 2
> plot(x, col = (km.out$cluster + 1),
+ main = "K-Means Clustering Results with K = 2",
+ xlab = "", ylab = "", pch = 20, cex = 2)
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 20)
> km.out
K-means clustering with 3 clusters of sizes 17, 23, 10
Cluster means:
              [,1]
                                    [,2]
1 3.7789567 -4.56200798
2 -0.3820397 -0.08740753
3 2.3001545 -2.69622023
Clustering vector:

    [1]
    1
    3
    1
    3
    1
    3
    1
    1
    1
    1
    3
    1
    1
    1
    1
    1
    1
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2<
[46] 3 2 2 2 2
Within cluster sum of squares by cluster:
[1] 25.74089 52.67700 19.56137
  (between_SS / total_SS = 79.3 %)
Available components:
[1] "cluster"
[7] "size"
                                   "centers"
                                                              "totss"
                                                                                         "withinss"
                                                                                                                    "tot.withinss" "betweenss"
                                  "iter"
                                                             "ifault"
> plot(x, col = (km.out$cluster + 1),
            main = "K-Means Clustering Results with K = 3",
xlab = "", ylab = "", pch = 20, cex = 2)
+
+
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 1)
> km.out$tot.withinss
[1] 104.3319
```

```
Console Terminal × Background Jobs ×
                                                                                                       -0-
🗣 R 4.2.2 · ~/ 🗇
       main = "K-Means Clustering Results with K = 3",
xlab = "", ylab = "", pch = 20, cex = 2)
                                                                                                            *
+
+
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 1)</pre>
> km.out$tot.withinss
[1] 104.3319
> km.out <- kmeans(x, 3, nstart = 20)
> km.out$tot.withinss
[1] 97.97927
> hc.complete <- hclust(dist(x), method = "complete")
> hc.average <- hclust(dist(x), method = "average")
> hc.single <- hclust(dist(x), method = "single")</pre>
> par(mfrow = c(1, 3))
> par(infrow = C(1, 3))
> plot(hc.complete, main = "Complete Linkage",
+ xlab = "", sub = "", cex = .9)
> plot(hc.average, main = "Average Linkage",
+ xlab = "", sub = "", cex = .9)
> plot(hc.single, main = "Single Linkage",
+ xlab = "", sub = "", cex = .9)
> cutree(hc.complete, 2)
[46] 1 2 2 2 2
> cutree(hc.single, 2)
 [46] 1 1 1 1 1
> cutree(hc.single, 4)
> xsc <- scale(x)</pre>
> plot(hclust(dist(xsc), method = "complete"),
      main = "Hierarchical Clustering with Scaled Features")
> x <- matrix(rnorm(30 \times 3), ncol = 3)
> dd <- as.dist(1 - cor(t(x)))</pre>
> plot(hclust(dd, method = "complete"),
+ main = "Complete Linkage with Correlation-Based Distance",
+ xlab = "", sub = "")
> |
```

Plots:-

Findings:-

- The above code performs k-means clustering on the scaled USArrests dataset, using the elbow method to determine the 3optimal number of clusters. The elbow method involves plotting the within-groups sum of squares (WSS) against the number of clusters, and selecting the number of clusters where the decrease in WSS begins to level off. In this case, we can see that the elbow occurs at k=3, so we choose k=3 for the k-means clustering.
- The kmeans() function performs k-means clustering on the scaled data, with centers=3 indicating that we want 3 clusters. The resulting cluster centers show the average values of each variable for each cluster.

3)

Code:-

library(ISLR2)

nci.labs <- NCI60\$labs

nci.data <- NCI60\$data

dim(nci.data)

nci.labs[1:4]

table(nci.labs)

```
pr.out <- prcomp(nci.data, scale = TRUE)
Cols <- function(vec) {
cols <- rainbow(length(unique(vec)))
return(cols[as.numeric(as.factor(vec))])
}
par(mfrow = c(1, 2))
plot(pr.out$x[, 1:2], col = Cols(nci.labs), pch = 19,
   xlab = "Z1", ylab = "Z2")
plot(pr.out$x[, c(1, 3)], col = Cols(nci.labs), pch = 19,
   xlab = "Z1", ylab = "Z3")
summary(pr.out)
plot(pr.out)
pve <- 100 * pr.out$sdev^2 / sum(pr.out$sdev^2)
par(mfrow = c(1, 2))
plot(pve, type = "o", ylab = "PVE",
   xlab = "Principal Component", col = "blue")
plot(cumsum(pve), type = "o", ylab = "Cumulative PVE",
   xlab = "Principal Component", col = "brown3")
sd.data <- scale(nci.data)</pre>
par(mfrow = c(1, 3))
data.dist <- dist(sd.data)
plot(hclust(data.dist), xlab = "", sub = "", ylab = "",
   labels = nci.labs, main = "Complete Linkage")
plot(hclust(data.dist, method = "average"),
   labels = nci.labs, main = "Average Linkage",
   xlab = "", sub = "", ylab = "")
plot(hclust(data.dist, method = "single"),
   labels = nci.labs, main = "Single Linkage",
   xlab = "", sub = "", ylab = "")
hc.out <- hclust(dist(sd.data))</pre>
```

Output:-

Console Terminal × Background Jobs × -0-R 4.2.2 · ~/ @ > library(ISLR2) > nci.labs <- NCI60\$labs > nci.data <- NCI60\$data dim(nci.data) [1] 64 6830 > nci.labs[1:4] [1] "CNS" "CNS" "CNS" "RENAL" > table(nci.labs) nci.labs LEUKEMIA MCF7A-repro BREAST CNS COLON K562A-repro K562B-repro 5 6 1 1 1 PROSTATE MCF7D-repro MELANOMA NSCLC OVARIAN RENAL UNKNOWN 8 9 6 9 1 1 2 > pr.out <- prcomp(nci.data, scale = TRUE)</pre> > Cols <- function(vec) {</pre> cols <- rainbow(length(unique(vec)))</pre> + return(cols[as.numeric(as.factor(vec))]) + + } > par(mfrow = c(1, 2)) > plot(pr.out\$x[, 1:2], col = Cols(nci.labs), pch = 19, + xlab = "Z1", ylab = "Z2") > plot(pr.out\$x[, c(1, 3)], col = Cols(nci.labs), pch = 19, + xlab = "Z1", ylab = "Z3") > summary(pr.out) Importance of components: PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 Standard deviation 27.8535 21.48136 19.82046 17.03256 15.97181 15.72108 14.47145 13.54427 Proportion of Variance 0.1136 0.06756 0.05752 0.04248 0.03735 0.03619 0.03066 0.02686 0.31850 0.35468 Cumulative Proportion 0.1136 0.18115 0.23867 0.28115 0.38534 0.41220 PC16 PC9 PC10 PC11 PC12 PC13 PC14 PC15 13.14400 12.73860 12.68672 12.15769 11.83019 11.62554 11.43779 11.00051 Standard deviation Proportion of Variance 0.02529 0.02376 0.02357 0.02164 0.02049 0.01979 0.01915 0.01772 Cumulative Proportion 0.43750 0.46126 0.48482 0.50646 0.52695 0.54674 0.56590 0.58361 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 10.65666 10.48880 10.43518 10.3219 10.14608 10.0544 9.90265 9.64766 Standard deviation Proportion of Variance 0.01663 0.01611 0.01594 0.0156 0.01507 0.0148 0.01436 0.01363 0.60024 0.61635 0.63229 0.6479 0.66296 0.6778 0.69212 0.70575 Cumulative Proportion PC25 PC27 PC28 PC29 PC30 PC26 PC31 PC32 PC33 9.50764 9.33253 9.27320 9.0900 8.98117 8.75003 8.59962 8.44738 8.37305 Standard deviation Proportion of Variance 0.01324 0.01275 0.01259 0.0121 0.01181 0.01121 0.01083 0.01045 0.01026 Cumulative Proportion 0.71899 0.73174 0.74433 0.7564 0.76824 0.77945 0.79027 0.80072 0.81099

ඹ R 4.2.2 · ~/ 🖈								
	PC34	PC35 PC30	5 PC37	PC38	PC39	PC40 PC4	1 PC42	
Standard deviation	8.21579	8.15731 7.9746	5 7.90446	7.82127 7	7.72156 7.5	8603 7.4561	9 7.3444	
Proportion of Varianc	e 0.00988	0.00974 0.0093	L 0.00915	0.00896 (0.00873 0.0	0843 0.0081	4 0.0079	
Cumulative Proportion	0.82087	0.83061 0.83992	2 0.84907	0.85803 0	0.86676 0.8	7518 0.8833	2 0.8912	
	PC43	PC44 PC45	PC46	PC47	PC48 PC	49 PC50	PC51	
Standard de∨iation	7.10449	7.0131 6.95839	6.8663 6.	80744 6.6	54763 6.616	07 6.40793	6.21984	
Proportion of Varianc	e 0.00739	0.0072 0.00709	0.0069 0.	00678 0.0	00647 0.006	41 0.00601	0.00566	
Cumulative Proportion	0.89861	0.9058 0.91290	0.9198 0.	92659 0.9	93306 0.939	47 0.94548	0.95114	
	PC52	PC53 PC54	4 PC55	PC56	PC57 P	C58 PC59	PC60	
Standard deviation	6.20326	6.06706 5.9180	5 5.91233	5.73539 5	5.47261 5.2	921 5.02117	4.68398	
Proportion of Varianc	e 0.00563	0.00539 0.0051	3 0.00512	0.00482 (0.00438 0.0	041 0.00369	0.00321	
Cumulative Proportion	0.95678	0.96216 0.96729	9 0.97241	0.97723 (0.98161 0.9	857 0.98940	0.99262	
	PC61	PC62 PC6	3 PC6	4				
Standard deviation	4.17567	4.08212 4.04124	4 2.148e-1	4				
Proportion of Varianc	e 0.00255	0.00244 0.00239	0.000e+0	0				
Cumulative Proportion	0.99517	0.99761 1.00000	0 1.000e+0	0				
<pre>> plot(pr.out)</pre>								
> pve <- 100 * pr.out	\$sdev^2 /	<pre>sum(pr.out\$sdev</pre>	/^2)					
> par(mfrow = c(1, 2)))							
<pre>> plot(pve, type = "</pre>	o", ylab	= "PVE",						
+ xlab = "Princi	pal Compo	nent", col = "b	lue")					
<pre>> plot(cumsum(pve), t</pre>	ype = "o"	, ylab = "Cumula	ative PVE"					
+ xlab = "Princi	pal Compo	nent", col = "bi	rown3")					
> sd.data <- scale(nc	i.data)							
> par(mfrow = $c(1, 3)$)							
> data.dist <- dist(s	d.data)							
> plot(hclust(data.di	st), xlab	= "", sub = ""	, ylab = "	",				
+ labels = nci.l	abs, main	= "Complete Li	nkage")					
> plot(hclust(data.di	st, metho	d = "average"),						
+ labels = nci.l	abs, main	= "Average Link	cage",					
+ xlab = "", sub	= "", yla	ab = "")						
> plot(hclust(data.di	st, metho	d = "single"),						
+ labels = nci.l	abs, mai	n = "Single Lin	kage",					
+ xlab = "", sub	= "", yla	ab = "")						
> hc.out <- hclust(di	st(sd.dat	a))						
> hc.clusters <- cutr	ee(hc.out	, 4)						
<pre>> table(hc.clusters,</pre>	nci.labs)	-						
nci.labs	-							
hc.clusters BREAST CN	S COLON K	562A-repro K5628	B-repro LE	UKEMIA MO	CF7A-repro	MCF7D-repro	MELANOMA	
1 2	3 2	. 0	. 0	0	. 0	. 0	8	
2 3	2 0	0	0	0	0	0	0	

```
Console Terminal × Background Jobs ×
                                                                                                                 -0
ඹ R 4.2.2 · ~/ 🖈
           4
                  0
                            0
                                       0
                                              0
                                                       0
> par(mfrow = c(1, 1))
> plot(hc.out, labels = nci.labs)
> abline(h = 139, col = "red")
> hc.out
Call:
hclust(d = dist(sd.data))
Cluster method : complete
Distance : euclidean
Number of objects: 64
> set.seed(2)
> km.out <- kmeans(sd.data, 4, nstart = 20)</pre>
> km.clusters <- km.out$cluster</pre>
> table(km.clusters, hc.clusters)
           hc.clusters
km.clusters 1 2 3 4
1 11 0 0 9
           2 20 7 0 0
3 9 0 0 0
           4 0 0 8 0
> hc.out <- hclust(dist(pr.out$x[, 1:5]))</pre>
> plot(hc.out, labels = nci.labs,
+ main = "Hier. Clust. on First Five Score Vectors")
> table(cutree(hc.out, 4), nci.labs)
   nci.labs
    BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro MCF7D-repro MELANOMA NSCLC
             2
          0
                                                  0
                                                                           0
  1
                      7
                                    0
                                                             2
                                                                                         0
                                                                                                    1
                                                                                                           8
                                                                                                    7
  2
                      0
          5
               3
                                    0
                                                   0
                                                             0
                                                                           0
                                                                                         0
                                                                                                           1
  3
          0
               0
                                                                                                    0
                                                                                                           0
                      0
                                    1
                                                   1
                                                             4
                                                                           0
                                                                                         0
  4
          2
               0
                      0
                                    0
                                                   0
                                                             0
                                                                           1
                                                                                         1
                                                                                                    0
                                                                                                           0
  nci.labs
    OVARIAN PROSTATE RENAL UNKNOWN
                      2
                            7
                                       0
  1
          5
  2
                      0
                             2
           1
                                       1
            0
                             0
  3
                      0
                                       0
  4
           0
                      0
                                       0
                             0
>
```

Plots:-

Findings:-

- The resulting plots shows the cumulative PVE of the principal components . We see that together, the first seven principal components explain around 40% of the variance in the data. This is not a huge amount of the variance. However, looking at the scree plot, we see that while each of the first seven principal components explain a substantial amount of variance, there is a marked decrease in the variance explained by further principal components. That is, there is an elbow in the plot after approximately the seventh principal component. This suggests that there may be little benefit to examining more than seven or so principal components.
- These results are different from the ones that we obtained when we performed hierarchical clustering on the full data set. Sometimes performing clustering on the first few principal component score vectors can give better results than performing clustering on the full data. In this situation, we might view the principal component step as one of denoising the data. We could also perform K-means clustering on the first few principal component score vectors rather than the full data set.