Advanced Mathematical Statistics

MTH-522
Project-4

Submitted by
Mahesh Vinay Varma Chiluvuri
02084470

1) Code:-
data(USArrests)
states <- row.names(USArrests)
states
names(USArrests)
apply(USArrests, 2, mean)
apply(USArrests, 2, var)
pr.out $<-\operatorname{prcomp}($ USArrests, scale $=$ TRUE $)$
names(pr.out)
pr.out\$center
pr.out\$scale
pr.out\$rotation
dim(pr.out\$x)
biplot(pr.out, scale $=0$)
pr.out\$rotation $=$-pr.out\$rotation
pr.out\$x = -pr.out\$x
biplot(pr.out, scale $=0)$
pr.out\$sdev
```
pr.var <- pr.out$sdev^2
pr.var
pve <- pr.var / sum(pr.var)
pve
par(mfrow = c(1, 2))
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained", ylim =c(0,1),
    type = "b")
plot(cumsum(pve), xlab = "Principal Component",
    ylab = "Cumulative Proportion of Variance Explained",
    ylim =c(0, 1), type = "b")
a<- c(1, 2, 8, -3)
cumsum(a)
X <- data.matrix(scale(USArrests))
pcob<- prcomp(X)
summary(pcob)
sX <- svd(X)
names(sX)
round(sX$v, 3)
pcob$rotation
t(sX$d * t(sX$u))
pcob$x
nomit <- 20
set.seed(15)
ina<- sample(seq(50), nomit)
inb <- sample(1:4, nomit, replace = TRUE)
Xna <- X
index.na <- cbind(ina, inb)
Xna[index.na] <- NA
fit.svd <- function(X,M = 1) {
```

```
svdob <- svd(X)
    with(svdob,
    u[, 1:M, drop = FALSE ] %*%
        (d[1:M]*t(v[, 1:M, drop = FALSE ] )}
)
}
Xhat <- Xna
xbar <- colMeans(Xna, na.rm = TRUE)
Xhat[index.na] <- xbar[inb]
thresh <- 1e-7
rel_err <- 1
iter <- 0
ismiss <- is.na(Xna)
mssold <- mean((scale(Xna, xbar, FALSE)[!ismiss])^2)
mss0<- mean(Xna[!ismiss]^2)
while(rel_err > thresh) {
    iter <- iter + 1
    # Step 2(a)
    Xapp <- fit.svd(Xhat, M = 1)
    # Step 2(b)
    Xhat[ismiss] <- Xapp[ismiss]
    # Step 2(c)
    mss<- mean(((Xna - Xapp)[!ismiss])^2)
    rel_err <- (mssold - mss) / mss0
    mssold <- mss
    cat("Iter:", iter, "MSS:", mss,
    "Rel. Err:", rel_err, "\n")
}
```

$\operatorname{cor}($ Xapp[ismiss], X[ismiss])

Output:-


```
<<-2
R R 4.2.2 ~ ~/
> pr.out$sdev
[1] 1.5748783 0.9948694 0.5971291 0.4164494
> pr.var <- pr.out$sdev^2
> pr.var
[1] 2.4802416 0.9897652 0.3565632 0.1734301
> pve <- pr.var / sum(pr.var)
> pve
[1] 0.62006039 0.24744129 0.08914080 0.04335752
> par(mfrow = c(1, 2))
> plot(pve, xlab = "Principal Component",
+ ylab = "Proportion of Variance Explained", ylim = c(0, 1),
+ type = "b")
> plot(cumsum(pve), xlab = "Principal Component"
+ y`ab = "Cumulative Proportion of Variance Explained",
+ ylim = c(0, 1), type = "b")
> a <- c(1, 2, 8, -3)
> cumsum(a)
[1] 1 3 11 8
> X <- data.matrix(scale(USArrests))
> pcob <- prcomp(X)
> summary(pcob)
Importance of components:
                    PC1 PC2 
Standard deviation 1.5749 0.9949 0.59713 0.41645
Proportion of Variance 0.6201 0.2474 0.08914 0.04336
Cumulative Proportion 0.6201 0.8675 0.95664 1.00000
> sX <- svd(X)
> names (sX)
[1] "d" "u" "v"
> round(sX$v, 3)
[,1] [,2] [,3] [,4]
[1,] -0.536 0.418
[2,] -0.583 0.188 -0.268 -0.743
[3,] -0.278 -0.873 -0.378 0.134
[4,] -0.543 -0.167 0.818
> pcob$rotation
    PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assau7t -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rane -n 5424271 -n 1672186 n 8177777a n n8anว43)
```

Console	Terminal \times	Background Jobs			-
R R 4.2.2 \sim / \sim					
$>\mathrm{t}(\mathrm{sX} \mathrm{\$ d}$ * $\mathrm{t}(\mathrm{s} \times \$ \mathrm{u})) \mathrm{l}$					
	[,1]	[,2]	[,3]	[,4]	
[1,]	-0.97566045	1.12200121	-0.43980366	0.154696581	
[2,]	-1.93053788	1.06242692	2.01950027	-0.434175454	
[3,]	-1.74544285	-0.73845954	0.05423025	-0.826264240	
[4,]	0.13999894	1.10854226	0.11342217	-0.180973554	
[5,]	-2.49861285	-1.52742672	0.59254100	-0.338559240	
[6,]	-1.49934074	-0.97762966	1.08400162	0.001450164	
[7,]	1. 34499236	-1.07798362	-0.63679250	-0.117278736	
[8,]	-0.04722981	-0.32208890	-0.71141032	-0.873113315	
[9,]	-2.98275967	0.03883425	-0.57103206	-0.095317042	
[10,]	-1.62280742	1.26608838	-0.33901818	1.065974459	
[11,]	0.90348448	-1.55467609	0.05027151	0.893733198	
[12,]	1.62331903	0.20885253	0.25719021	-0.494087852	
[13,]	-1.36505197	-0.67498834	-0.67068647	-0.120794916	
[14,]	0.50038122	-0.15003926	0.22576277	0.420397595	
[15,]	2.23099579	-0.10300828	0.16291036	0.017379470	
[16,]	0.78887206	-0.26744941	0.02529648	0.204421034	
[17,]	0.74331256	6.94880748	-0.02808429	0.663817237	
[18,]	-1.54909076	6.86230011	-0.77560598	0.450157791	
[19,]	2.37274014	40.37260865	-0.06502225	-0.327138529	
[20,]	-1.74564663	0.42335704	-0.15566968	-0.553450589	
[21,]	0.48128007	-1.45967706	-0.60337172	-0.177793902	
[22,]	-2.08725025	-0.15383500	0.38100046	0.101343128	
[23,]	1.67566951	-0.62590670	0.15153200	0.066640316	
[24,]	-0.98647919	2.36973712	-0.73336290	0.213342049	
[25,]	-0.68978426	-0.26070794	0.37365033	0.223554811	
[26,]	1.17353751	0.53147851	0.24440796	0.122498555	
[27,]	1.25291625	-0.19200440	0.17380930	0.015733156	
[28,]	-2.84550542	-0.76780502	1.15168793	0.311354436	
[29,]	2.35995585	-0.01790055	0.03648498	-0.032804291	
[30,]	-0.17974128	-1.43493745	-0.75677041	0.240936580	
[31,]	-1.96012351	0.14141308	0.18184598	-0.336121113	
[32,]	-1.66566662	-0.81491072	-0.63661186	-0.013348844	
[33,]	-1.11208808	2.20561081	-0.85489245	-0.944789648	
[34,]	2.96215223	0.59309738	0.29824930	-0.251434626	
[35,]	0.22369436	-0.73477837	-0.03082616	0.469152817	
[36,]	0.30864928	-0.28496113	-0.01515592	0.010228476	
[37,]	-0.05852787	-0.53596999	0.93038718	-0.235390872	
[38,]	0.87948680	-0.56536050	-0.39660218	0.355452378	
「39.1	0.85509072	-1.47698328	-1.35617705	-0.607402746	


```
R R 4.2.2 ~/ /
+ u[, 1:M, drop = FALSE] %*%
+ (d[1:M] * t(v[, 1:M, drop = FALSE]))
    )
+ }
Xhat <- Xna
xbar <- colMeans(Xna, na.rm = TRUE)
Xhat[index.na] <- xbar[inb]
thresh <- 1e-7
rel_err <- 1
> iter <- 0
> ismiss <- is.na(Xna)
> mssold <- mean((scale(Xna, xbar, FALSE)[!ismiss])^2)
> mss0 <- mean(Xna[!ismiss]^2)
> while(rel_err > thresh) {
    iter <- iter + 1
        # Step 2(a)
        Xapp <- fit.svd(Xhat, M = 1)
        # Step 2(b)
        Xhat[ismiss] <- Xapp[ismiss]
        # Step 2(c)
        mss <- mean(((Xna - Xapp)[!ismiss])^2)
        rel_err <- (mssold - mss) / mss0
        mssold <- mss
        cat("Iter:", iter, "MSS:", mss,
            'Rel. Err:", rel_err, "\n")
+ }
Iter: 1 MSS: 0.3821695 Re1. Err: 0.6194004
Iter: 2 MSS: 0.3705046 Rel. Err: 0.01161265
Iter: 3 MSS: 0.3692779 Re1. Err: 0.001221144
Iter: 4 MSS: 0.3691229 Rel. Err: 0.0001543015
Iter: 5 MSS: 0.3691008 Re1. Err: 2.199233e-05
Iter: 6 MSS: 0.3690974 Rel. Err: 3.376005e-06
Iter: 7 MSS: 0.3690969 Re1. Err: 5.465067e-07
Iter: 8 MSS: 0.3690968 Re1. Err: 9.253082e-08
>
> cor(Xapp[ismiss], X[ismiss])
[1] 0.6535043
> |
```

Plots:-

```Files Plots Packages Help Viewer Presentation




Findings:-
- The \(\operatorname{prcomp}()\) function performs PCA on the given dataset, and the argument scale = TRUE scales the variables to have mean 0 and standard deviation 1 before performing PCA. The summary() function prints a summary of the PCA results, including the proportion of variance explained by each principal component.
- The first row shows the standard deviations of the four principal components. The first principal component ( PC 1 ) explains 1.57 units of variance in the data, the second principal component ( PC 2 ) explains 0.99 units of variance, and so on. Together, the four principal components explain all of the variance in the data.
- The second row shows the rotation matrix, which gives the loadings (correlations) of each variable on each principal component. For example, the loading of Murder on PC1 is -0.5359 , which means that states with high Murder rates tend to have low scores on PC1. The loading of UrbanPop on PC2 is 0.8728 , which means that states with high percentages of urban population tend to have low scores on PC2.
- The interpretation of the principal components depends on the loadings of the variables on each component. In this case, we can interpret the first principal component (PC1) as a measure of overall crime rate, as it is positively correlated with all of the variables (Murder, Assault, Rape) in the dataset. The second principal component (PC2) is negatively correlated with UrbanPop, and can be interpreted as a measure of urbanization. The third principal component (PC3) is strongly positively correlated with Rape, and can be interpreted as a measure of sexual assault.
- The fourth principal component (PC4) is positively correlated with Murder and negatively correlated with Assault, and can be interpreted as a measure of the difference between violent and non-violent crimes.
2)

Code:-
set.seed(2)
\(\mathrm{x}<-\operatorname{matrix}(\operatorname{rnorm}(50 * 2)\), ncol \(=2)\)
\(x[1: 25,1]<-x[1: 25,1]+3\)
\(x[1: 25,2]<-x[1: 25,2]-4\)
km.out \(<-\operatorname{kmeans}(\mathrm{x}, 2\), nstart \(=20)\)
km.out\$cluster
\(\operatorname{plot}(x, \operatorname{col}=(k m . o u t \$ c l u s t e r+1)\),
main \(=\) "K-Means Clustering Results with \(\mathrm{K}=2\) ",
xlab = "", ylab = "", pch = 20, cex = 2)
set.seed(4)
km.out \(<-\operatorname{kmeans}(\mathrm{x}, 3\), nstart \(=20)\)
km.out
\(\operatorname{plot}(\mathrm{x}, \operatorname{col}=(\mathrm{km}\). out\$cluster +1\()\),
main \(=\) "K-Means Clustering Results with \(K=3\) ",
xlab = "", ylab = "", pch = 20, cex = 2)
set.seed(4)
km.out <- kmeans(x, 3, nstart = 1)
km.out\$tot.withinss
km.out <- kmeans(x, 3, nstart = 20)
km.out\$tot.withinss
hc.complete <- hclust(dist(x), method = "complete")
hc.average <- hclust(dist( \(x\) ), method = "average")
hc.single <- hclust(dist(x), method = "single")
\(\operatorname{par}(\) mfrow \(=c(1,3))\)
plot(hc.complete, main = "Complete Linkage",
xlab = "", sub = "", cex = .9)
plot(hc.average, main = "Average Linkage",
xlab = "", sub = "", cex = .9)
plot(hc.single, main \(=\) "Single Linkage",
xlab = "", sub = "", cex = .9)
cutree(hc.complete, 2)
cutree(hc.average, 2)
cutree(hc.single, 2)
cutree(hc.single, 4)
xsc <- scale (x)
plot(hclust(dist(xsc), method = "complete"), main \(=\) "Hierarchical Clustering with Scaled Features")
\(x<-\operatorname{matrix}(\operatorname{rnorm}(30 * 3)\), ncol \(=3)\)
dd <- as.dist( \(1-\operatorname{cor}(\mathrm{t}(\mathrm{x})))\)
\(\operatorname{plot}(h c l u s t(d d\), method \(=\) "complete" \()\),
main \(=\) "Complete Linkage with Correlation-Based Distance",
xlab = "", sub = "")

\section*{Output:-}
```

Console Terminal }\times\mathrm{ Background Jobs
R R4.2.2 - ~/
> set.seed(2)
> x <- matrix(rnorm(50 * 2), ncol = 2)
> x[1:25, 1] <- x[1:25, 1] + 3
> x[1:25, 2] <- x[1:25, 2] - 4
> km.out <- kmeans(x, 2, nstart = 20)
> km.out\$cluster

```

```

[46] 2 2 2 2 2
> plot(x, col = (km.out\$cluster + 1),

+ main = "K-Means Clustering Results with K = 2",
+ xlab = "", y`ab = "", pch = 20, cex = 2)
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 20)
> km.out
K-means clustering with 3 clusters of sizes 17, 23, 10
Cluster means:
[,1] [,2]
1 3.7789567-4.56200798
2 -0.3820397-0.08740753
3 2.3001545 -2.69622023
Clustering vector:
[1] 1 3 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2
[46] 3 2 2 2 2
Within cluster sum of squares by cluster:
[1] 25.74089 52.67700 19.56137
(between_SS / total_SS = 79.3 %)
Available components:

```
```

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss"

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss"
[7] "size" "iter" "ifault"
[7] "size" "iter" "ifault"
> plot(x, col = (km.out$cluster + 1),
> plot(x, col = (km.out$cluster + 1),
+ main = "K-Means Clustering Results with K = 3",
+ main = "K-Means Clustering Results with K = 3",
+ xlab = "", y`ab = "", pch = 20, cex = 2)
+ xlab = "", y`ab = "", pch = 20, cex = 2)
> set.seed(4)
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 1)
> km.out <- kmeans(x, 3, nstart = 1)
> km.out$tot.withinss
> km.out$tot.withinss
\11 104.3319
```

\11 104.3319

```
```

Console Terminal × Background Jobs
\squareロ
R R4.2.2, ~/

+ main = "K-Means Clustering Results with K = 3",
+ xlab = "", y`ab = "", pch = 20, cex = 2)
> set.seed(4)
> km.out <- kmeans(x, 3, nstart = 1)
> km.out$tot.withinss
[1] 104.3319
> km.out <- kmeans(x, 3, nstart = 20)
> km.out$tot.withinss
[1] 97.97927
> hc.complete <- hclust(dist(x), method = "complete")
> hc.average <- hclust(dist(x), method = "average")
> hc.single <- hclust(dist(x), method = "single")
> par(mfrow = c(1, 3))
> plot(hc.complete, main = "Complete Linkage",
+ x7ab = "", sub = "", cex = .9)
> plot(hc.average, main = "Average Linkage",
+ xlab = "", sub = "", cex = .9)
> plot(hc.single, main = "Single Linkage",
+ xlab = "", sub = "", cex = .9)
> cutree(hc.complete, 2)

```

```

[46] 2 2 2 2 2
> cutree(hc.average, 2)

```

```

[46] 1 2 2 2 2
> cutree(hc.single, 2)

```

```

[46] 1 1 1 1 1 1 1
> cutree(hc.single, 4)

```

```

[46] 3 3 3 3 3
> xsc <- scale(x)
> plot(hclust(dist(xsc), method = "complete"),

+ main = "Hierarchical Clustering with Scaled Features")
> x <- matrix(rnorm(30 * 3), ncol = 3)
> dd <- as.dist(1 - cor(t(x)))
> plot(hclust(dd, method = "complete"),
main = "Complete Linkage with Correlation-Based Distance",
xlab = "", sub = "")

```

Plots:-
```

Files	Plots	Pack	Help	Vie	Presentation			\square
)	\oplus	om	ort	\otimes		- Publish	\checkmark	(3)

```

K-Means Clustering Results with K : K-Means Clustering Results with K :



Findings:-
- The above code performs k-means clustering on the scaled USArrests dataset, using the elbow method to determine the 3optimal number of clusters. The elbow method involves plotting the within-groups sum of squares (WSS) against the number of clusters, and selecting the number of clusters where the decrease in WSS begins to level off. In this case, we can see that the elbow occurs at \(k=3\), so we choose \(\mathrm{k}=3\) for the k -means clustering.
- The kmeans() function performs k-means clustering on the scaled data, with centers=3 indicating that we want 3 clusters. The resulting cluster centers show the average values of each variable for each cluster.

3 )
Code:-
library(ISLR2)
nci.labs <- NCI60\$labs
nci.data <- NCI60\$data
dim(nci.data)
nci.labs[1:4]
table(nci.labs)
```

pr.out <- prcomp(nci.data, scale = TRUE)
Cols <- function(vec) {
cols <- rainbow(length(unique(vec)))
return(cols[as.numeric(as.factor(vec))])
}
par(mfrow = c(1,2))
plot(pr.out$x[, 1:2], col = Cols(nci.labs), pch = 19,
 xlab = "Z1", ylab = "Z2")
plot(pr.out$x[, c(1, 3)], col = Cols(nci.labs), pch = 19,
xlab = "Z1", ylab = "Z3")
summary(pr.out)
plot(pr.out)
pve<-100* pr.out$sdev^2 / sum(pr.out$sdev^2)
par(mfrow = c(1,2))
plot(pve, type = "o", ylab = "PVE",
xlab = "Principal Component", col = "blue")
plot(cumsum(pve), type = "o", ylab = "Cumulative PVE",
xlab = "Principal Component", col = "brown3")
sd.data <- scale(nci.data)
par(mfrow =c(1, 3))
data.dist <- dist(sd.data)
plot(hclust(data.dist), xlab = "", sub = "", ylab = "",
labels = nci.labs, main = "Complete Linkage")
plot(hclust(data.dist, method = "average"),
labels = nci.labs, main = "Average Linkage",
xlab = "", sub = "", ylab = "")
plot(hclust(data.dist, method = "single"),
labels = ncilabs, main = "Single Linkage",
xlab = "", sub = "", ylab = "")
hc.out <- hclust(dist(sd.data))

```
hc.clusters <- cutree(hc.out, 4)
table(hc.clusters, nci.labs)
\(\operatorname{par}(\) mfrow \(=c(1,1))\)
plot(hc.out, labels \(=\) nci.labs)
abline( \(\mathrm{h}=139\), col = "red" \()\)
hc.out
set.seed(2)
km.out <- kmeans(sd.data, 4, nstart = 20)
km.clusters <- km.out\$cluster
table(km.clusters, hc.clusters)
hc.out <- hclust(dist(pr.out\$x[, 1:5]))
plot(hc.out, labels \(=\) nci.labs,
main \(=\) "Hier. Clust. on First Five Score Vectors")
table(cutree(hc.out, 4), nci.labs)

Output:-



\(>\operatorname{par}(m f r o w=c(1,1))\)
\(>\mathrm{plot}(\mathrm{hc}\). out, labels \(=\) nci.1abs)
> abline(h = 139, col = "red")
> hc.out
Ca11:
hclust(d = dist(sd.data))
Cluster method : complete
Distance : euclidean
Number of objects: 64
> set. seed(2)
\(>\mathrm{km}\). out <- kmeans(sd.data, 4, nstart \(=20\) )
\(>\) km.clusters <- km.out\$cluster
> table(km.clusters, hc.clusters)
hc.clusters
km.clusters \(11 \begin{array}{llll}1 & 2 & 3\end{array}\)
\(\begin{array}{lllll}1 & 11 & 0 & 0 & 9\end{array}\)
\(\begin{array}{lllll}2 & 20 & 7 & 0 & 0\end{array}\)
\(\begin{array}{lllll}3 & 9 & 0 & 0 & 0\end{array}\)
\(\begin{array}{lllll}4 & 0 & 0 & 8 & 0\end{array}\)
\(>\) hc. out <- hclust(dist(pr.out \(\$ \times[, 1: 5])\) )
\(>\mathrm{p}\) lot (hc. out, labels = nci.1abs,
\(+\quad\) main \(=\) "Hier. Clust. on First Five Score Vectors")
> table(cutree(hc.out, 4), nci.labs)
nci. 1 abs
BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro MCF7D-repro MELANOMA NSCLC
\begin{tabular}{llllllllll}
1 & 0 & 2 & 7 & 0 & 0 & 2 & 0 & 0 & 1 \\
2 & 5 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \\
3 & 0 & 0 & 0 & 1 & 1 & 4 & 0 & 0 & 0 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
nci.labs & & & & & & 0 & 0
\end{tabular} OVARIAN PROSTATE RENAL UNKNOWN
\begin{tabular}{rllll}
1 & 5 & 2 & 7 & 0 \\
2 & 1 & 0 & 2 & 1 \\
3 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0
\end{tabular}

Plots:-
```

Files Plots Packages Help Viewer Presentation

```




\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Files & Plots & Packages & Help & Viewer & Presentation & & & \(\square\) \\
\hline \(\checkmark\) & \({ }^{+}\) & 2oom - ב & xport & © & & Sor Publish & & \\
\hline
\end{tabular}

Hier. Clust. on First Five Score Vectors

dist(pr.out\$x[, 1:5])
hclust ( \({ }^{*}\), "complete")

Findings:-
- The resulting plots shows the cumulative PVE of the principal components. We see that together, the first seven principal components explain around \(40 \%\) of the variance in the data. This is not a huge amount of the variance. However, looking at the scree plot, we see that while each of the first seven principal components explain a substantial amount of variance, there is a marked decrease in the variance explained by further principal components. That is, there is an elbow in the plot after approximately the seventh principal component. This suggests that there may be little benefit to examining more than seven or so principal components.
- These results are different from the ones that we obtained when we performed hierarchical clustering on the full data set. Sometimes performing clustering on the first few principal component score vectors can give better results than performing clustering on the full data. In this situation, we might view the principal component step as one of denoising the data. We could also perform K-means clustering on the first few principal component score vectors rather than the full data set.```

