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1) Code:-  

 

  data(USArrests)  

  states <- row.names(USArrests) 

  states 

  names(USArrests) 

  apply(USArrests, 2, mean) 

  apply(USArrests, 2, var) 

  pr.out <- prcomp(USArrests, scale = TRUE) 

  names(pr.out) 

  pr.out$center 

  pr.out$scale 

  pr.out$rotation 

  dim(pr.out$x) 

  biplot(pr.out, scale = 0) 

  pr.out$rotation = -pr.out$rotation 

  pr.out$x = -pr.out$x 

  biplot(pr.out, scale = 0) 

  pr.out$sdev 



  pr.var <- pr.out$sdev^2 

  pr.var 

  pve <- pr.var / sum(pr.var) 

  pve 

  par(mfrow = c(1, 2)) 

  plot(pve, xlab = "Principal Component", 

       ylab = "Proportion of Variance Explained", ylim = c(0, 1), 

       type = "b") 

  plot(cumsum(pve), xlab = "Principal Component", 

       ylab = "Cumulative Proportion of Variance Explained", 

       ylim = c(0, 1), type = "b") 

  a <- c(1, 2, 8, -3) 

  cumsum(a) 

  X <- data.matrix(scale(USArrests)) 

  pcob <- prcomp(X) 

  summary(pcob) 

  sX <- svd(X) 

  names(sX) 

  round(sX$v, 3) 

  pcob$rotation 

  t(sX$d * t(sX$u)) 

  pcob$x 

  nomit <- 20 

  set.seed(15) 

  ina <- sample(seq(50), nomit) 

  inb <- sample(1:4, nomit, replace = TRUE) 

  Xna <- X 

  index.na <- cbind(ina, inb) 

  Xna[index.na] <- NA 

  fit.svd <- function(X, M = 1) { 



    svdob <- svd(X) 

    with(svdob, 

         u[, 1:M, drop = FALSE] %*% 

           (d[1:M] * t(v[, 1:M, drop = FALSE])) 

    ) 

  } 

   

  Xhat <- Xna 

  xbar <- colMeans(Xna, na.rm = TRUE) 

  Xhat[index.na] <- xbar[inb] 

  thresh <- 1e-7 

  rel_err <- 1 

  iter <- 0 

  ismiss <- is.na(Xna) 

  mssold <- mean((scale(Xna, xbar, FALSE)[!ismiss])^2) 

  mss0 <- mean(Xna[!ismiss]^2) 

   

  while(rel_err > thresh) { 

    iter <- iter + 1 

    # Step 2(a) 

    Xapp <- fit.svd(Xhat, M = 1) 

    # Step 2(b) 

    Xhat[ismiss] <- Xapp[ismiss] 

    # Step 2(c) 

    mss <- mean(((Xna - Xapp)[!ismiss])^2) 

    rel_err <- (mssold - mss) / mss0 

    mssold <- mss 

    cat("Iter:", iter, "MSS:", mss, 

        "Rel. Err:", rel_err, "\n") 

  } 



   

  cor(Xapp[ismiss], X[ismiss]) 

 

Output:-  

 

 

 



 



 

 



 



 



 

 

Plots:- 



 

 



 

 

Findings:- 

 

 The prcomp() function performs PCA on the given dataset, and the argument scale = TRUE scales the 

variables to have mean 0 and standard deviation 1 before performing PCA. The summary() function 

prints a summary of the PCA results, including the proportion of variance explained by each principal 

component. 

 The first row shows the standard deviations of the four principal components. The first principal 

component (PC1) explains 1.57 units of variance in the data, the second principal component (PC2) 

explains 0.99 units of variance, and so on. Together, the four principal components explain all of the 

variance in the data. 

 The second row shows the rotation matrix, which gives the loadings (correlations) of each variable on 

each principal component. For example, the loading of Murder on PC1 is -0.5359, which means that 

states with high Murder rates tend to have low scores on PC1. The loading of UrbanPop on PC2 is -

0.8728, which means that states with high percentages of urban population tend to have low scores on 

PC2. 

 The interpretation of the principal components depends on the loadings of the variables on each 

component. In this case, we can interpret the first principal component (PC1) as a measure of overall 

crime rate, as it is positively correlated with all of the variables (Murder, Assault, Rape) in the dataset. 

The second principal component (PC2) is negatively correlated with UrbanPop, and can be interpreted 

as a measure of urbanization. The third principal component (PC3) is strongly positively correlated 

with Rape, and can be interpreted as a measure of sexual assault.  



 The fourth principal component (PC4) is positively correlated with Murder and negatively correlated 

with Assault, and can be interpreted as a measure of the difference between violent and non-violent 

crimes. 

 

2) 

Code:- 

set.seed(2) 

x <- matrix(rnorm(50 * 2), ncol = 2) 

x[1:25, 1] <- x[1:25, 1] + 3 

x[1:25, 2] <- x[1:25, 2] - 4 

km.out <- kmeans(x, 2, nstart = 20) 

km.out$cluster 

plot(x, col = (km.out$cluster + 1), 

     main = "K-Means Clustering Results with K = 2", 

     xlab = "", ylab = "", pch = 20, cex = 2) 

set.seed(4) 

km.out <- kmeans(x, 3, nstart = 20) 

km.out 

plot(x, col = (km.out$cluster + 1), 

     main = "K-Means Clustering Results with K = 3", 

     xlab = "", ylab = "", pch = 20, cex = 2) 

set.seed(4) 

km.out <- kmeans(x, 3, nstart = 1) 

km.out$tot.withinss 

km.out <- kmeans(x, 3, nstart = 20) 

km.out$tot.withinss 

hc.complete <- hclust(dist(x), method = "complete") 

hc.average <- hclust(dist(x), method = "average") 

hc.single <- hclust(dist(x), method = "single") 

par(mfrow = c(1, 3)) 

plot(hc.complete, main = "Complete Linkage", 



     xlab = "", sub = "", cex = .9) 

plot(hc.average, main = "Average Linkage", 

     xlab = "", sub = "", cex = .9) 

plot(hc.single, main = "Single Linkage", 

     xlab = "", sub = "", cex = .9) 

cutree(hc.complete, 2) 

cutree(hc.average, 2) 

cutree(hc.single, 2) 

cutree(hc.single, 4) 

xsc <- scale(x) 

plot(hclust(dist(xsc), method = "complete"), 

     main = "Hierarchical Clustering with Scaled Features") 

x <- matrix(rnorm(30 * 3), ncol = 3) 

dd <- as.dist(1 - cor(t(x))) 

plot(hclust(dd, method = "complete"), 

     main = "Complete Linkage with Correlation-Based Distance", 

     xlab = "", sub = "") 

 

 

Output:- 



 

 



 

 

Plots:- 

 



 

Findings:- 

 The above code performs k-means clustering on the scaled USArrests dataset, using the elbow method 

to determine the 3optimal number of clusters. The elbow method involves plotting the within-groups 

sum of squares (WSS) against the number of clusters, and selecting the number of clusters where the 

decrease in WSS begins to level off. In this case, we can see that the elbow occurs at k=3, so we choose 

k=3 for the k-means clustering. 

 The kmeans() function performs k-means clustering on the scaled data, with centers=3 indicating that 

we want 3 clusters. The resulting cluster centers show the average values of each variable for each 

cluster. 

 

3 )  

Code:- 

library(ISLR2) 

nci.labs <- NCI60$labs 

nci.data <- NCI60$data 

dim(nci.data) 

nci.labs[1:4] 

table(nci.labs) 



pr.out <- prcomp(nci.data, scale = TRUE) 

Cols <- function(vec) { 

  cols <- rainbow(length(unique(vec))) 

  return(cols[as.numeric(as.factor(vec))]) 

} 

par(mfrow = c(1, 2)) 

plot(pr.out$x[, 1:2], col = Cols(nci.labs), pch = 19, 

     xlab = "Z1", ylab = "Z2") 

plot(pr.out$x[, c(1, 3)], col = Cols(nci.labs), pch = 19, 

     xlab = "Z1", ylab = "Z3") 

summary(pr.out) 

plot(pr.out) 

pve <- 100 * pr.out$sdev^2 / sum(pr.out$sdev^2) 

par(mfrow = c(1, 2)) 

plot(pve,  type = "o", ylab = "PVE", 

     xlab = "Principal Component", col = "blue") 

plot(cumsum(pve), type = "o", ylab = "Cumulative PVE", 

     xlab = "Principal Component", col = "brown3") 

sd.data <- scale(nci.data) 

par(mfrow = c(1, 3)) 

data.dist <- dist(sd.data) 

plot(hclust(data.dist), xlab = "", sub = "", ylab = "", 

     labels = nci.labs, main = "Complete Linkage") 

plot(hclust(data.dist, method = "average"), 

     labels = nci.labs, main = "Average Linkage", 

     xlab = "", sub = "", ylab = "") 

plot(hclust(data.dist, method = "single"), 

     labels = nci.labs,  main = "Single Linkage", 

     xlab = "", sub = "", ylab = "") 

hc.out <- hclust(dist(sd.data)) 



hc.clusters <- cutree(hc.out, 4) 

table(hc.clusters, nci.labs) 

par(mfrow = c(1, 1)) 

plot(hc.out, labels = nci.labs) 

abline(h = 139, col = "red") 

hc.out 

set.seed(2) 

km.out <- kmeans(sd.data, 4, nstart = 20) 

km.clusters <- km.out$cluster 

table(km.clusters, hc.clusters) 

hc.out <- hclust(dist(pr.out$x[, 1:5])) 

plot(hc.out, labels = nci.labs, 

     main = "Hier. Clust. on First Five Score Vectors") 

table(cutree(hc.out, 4), nci.labs) 

 

Output:-  



 

 



 



 

Plots:- 



 



 

 

Findings:- 

 The resulting plots shows the cumulative PVE of the principal components . We see that together, the 

first seven principal components explain around 40% of the variance in the data. This is not a huge 

amount of the variance. However, looking at the scree plot, we see that while each of the first seven 

principal components explain a substantial amount of variance, there is a marked decrease in the 

variance explained by further principal components. That is, there is an elbow in the plot after 

approximately the seventh principal component. This suggests that there may be little benefit to 

examining more than seven or so principal components. 

 These results are different from the ones that we obtained when we performed hierarchical clustering 

on the full data set. Sometimes performing clustering on the first few principal component score 

vectors can give better results than performing clustering on the full data. In this situation, we might 

view the principal component step as one of denoising the data. We could also perform K-means 

clustering on the first few principal component score vectors rather than the full data set. 

 

 

 

 

 


